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ABSTRACT

GEODETIC ANALYSIS OF SKYLAB ALTIMETRY PRELIMINARY DATA

The analysis was based on a time series intrinsic relationship
between the satellite ephemeris, altimeter measured ranges, and the
corresponding a priori values of subsatellite geoidal heights. Using,
sequential least squares processing with parameter weighting, the objective
was to recover (1) the absolute geoidal heights of the subsatellite points,
and (2) the associated altimeter calibration constant(s). Preliminary
results from Skylab Altimetry are given, using various combinations of orbit
ephemeris and altimeter ranges as computed differently by NASA/JSC and NASA/
Wallops. The influences of orbit accuracy, weighting functions and a priori
ground truth are described, based on the various combination solutions. It
is shown that to deduce geoidal height by merely subtracting the height of
the satellite from the altimeter range is inadmissible.

In particular, the results of such direct subtraction can be very
misleading if the orbit used is computed from data that included altimeter
data used as height constraints. In view of the current state of our
knowledge of (1) satellite altimeter biases and (2) radial errors in orbit
computation relative to geocenter, and because satellite altimetry is a
"geodetic geometric leveling from space", the use of geodetic ground truth
samples as control "benchmarks" appears indispensable for the recovery of
absolute geoidal heights with correct scale. Such geodetic ground truth in
the oceans have to be determined from marine geodetic techniques involving
astrogravimetry and satellite geodesy.
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GEODETIC ANALYSIS OF SKYLAB ALTIMETRY
PRELIMINARY DATA - SL/2 EREP PASS 9

INTRODUCTION

The "Williamstown Study" [Kaula, 1970] recommendation for the

use of spacecraft altimeters for geodetic, geophysical and oceanographic

studies of the oceans and the earth's gravity field was implemented for

the first time in history under Skylab's experiment S-193. Battelle's

Columbus Laboratories was awarded the only contract for "Calibration and

Evaluation of Skylab Altimetry for Geodetic Determination of the Geoid".

The S-193 altimeter experiment is one of a number classified under "Earth

Resources Experiments Package" (EREP) whose end objectives are to solve

various problems on earth, that directly affect even the man in the street.

Three manned Skylab missions--SL/2, SL/3, and SL/4, are to provide

data from the S-193 system. Geodetic analysis of Skylab S-193 altimeter

preliminary data from mission SL/2 and EREP pass number 9 is the subject

of this paper. The overall objective of the investigation is to demonstrate

the feasibility of and necessary conditions for determination of the Marine

Geoid (i.e., the geoid in ocean areas) from satellite altimetry. The geoid

is the equipotential surface that would coincide with "undisturbed" mean

sea level of the earth's gravity field. "Undisturbed" is the condition

that would exist if the oceans were acted on by the force of gravity only

and no other forces such as due to ocean currents, winds, tides, etc.

Thus, determination of the geoid (mean sea level - msl) is basic to under-

standing of the oceans and their dynamic phenomena such as currents, tides,

circulation patterns and hence air-sea interactions. Improved numerical

weather predictions require accurate knowledge of these ocean dynamics

phenomena. Navigation, waste disposal and pollution control also benefit

from an accurate knowledge of ocean dynamics. More accurate determination

of the geoid will lead to a better definition of the earth's gravity model.

Computation of the global geoid by conventional methods is so expensive and

time consuming and are beset with so many problems as discussed in Fubara

and Mourad [1972a] that these conventional techniques cannot be depended on
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for completion of the job in the forseeable future. These factors justify

the need for new systems, and techniques and current indications are that

satellite altimetry may be the answer.

T Satellite altimeter at an
instant of time

Mean Satellite orbi

surfaces associated with satellite a calibrted alis the raw atimeter
Swhich has to be corrected mefor laboratory insturement

C - Geoid

S represents the nton-per of dic "sea level". CT and CE, the geocentric
gof the altimeter aviy ReE, its subsateite point on thference Ellipoid

S Man Instantaneous
Sea Surface (MISS)

FIGURE 1. SCHEMATIC GEOCENTRIC RELATIONS OF SURFACES
INVOLVED IN SATELLITE ALTIMETRY

Figure 1 shows schematic geocentric relations of the various

surfaces associated with satellite altimetry. TM is the raw altimeter range

which has to be corrected for laboratory instrumental calibration, electro-

magnetic effects, sea state, and periodic sea surface influences to give TS.

S represents the non-periodic "sea level". CT and CE, the geocentric radii

of the altimeter and E, its subsatellite point on the reference ellipsoid,

are computed from satellite tracking information. EG is the absolute geoidal

undulation to be computed from this investigation.
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ANALYTICAL DATA HANDLING FORMULATIONS

Condition Equation of Intrinsic Parameters

Each measured altimeter range Ro with an associated measurement
residual vi is intrinsically related to (1) Xs, Y and Z (the satellites s a
coordinates at the instant of measurement), (2) the geoidal undulation

a (of the subsatellite point) based on a reference ellipsoid of para-
meters a, and e, and (3) the biases in all measurement systems involved.
The condition equation for this intrinsic relationship can be stated as:

vi + Ro(1 + Af) - Di  N + ANi =0 (1)

where

Af = fi(systematic errors in Xs, Ys Z , the altimeter bias and
sea state correction bias) is the total system calibration

constant to be determined,

N = N + AN (No is an approximate value for Na)

and

Di = f2 (Xs , YS , Z S, a, e).

The exact functional mathematical expression for Af is unknown and is treated
later.

Di is essentially the geodetic height of the satellite above the
chosen reference ellipsoid and is given by

Di = (X2 + 1 / 2 S e c 1 - a(l-e2Sin2 )-1/2 (2a)

or

Di = ZsCosec cp-a(l-e 2Sin 2 ) -1/2(l+e 2) (2b)

However, usually cp in Equation (2) is not known and has to be derived
from= tan-1 s + e a(l-e2 Sin cp) -1/2

(2 2 )1/2 (3)s
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Equation (3) is usually not solved directly except as recently developed

by Paul (1973]. Solving for Di and i from the given X , Y and Z was

done iteratively. By putting Di = 0, the first approximation for cpi is

(p tan-I[Z(X 2 + Y2)- 1 /2(1-e 2) /2] (4)

This cp is then used in Equation (3) which is iteratively solved from
i = 1, ... n until

n CPn-1 p Ac which is usually set at Np = 0.001 arc second.
Thereafter, Di is computed from Equation (2a) or (2b).

Generalized Least Squares Adjustment Model

Equation (1) can be rewritten in matrix form as

F1 (Xa, X, La) = 0, (5)

subject to the normalized weighting functions P1 P2 and P3 associated with

X1 , X2 and Ll, respectively. Relating Equations (1) and (5) explicitly,

a o
X1 = N + ANi (6)

X2 = Af (7)

L1 a R + Vi  (8)1 i i

In this model, all parameters and measurements of the mathematical

model are treated as "measurements" and weighted accordingly. Thus,
constants (fixed variables) have infinitely large weights (P = co)
because they need no corrections (residuals) and as residuals tend towards

zero, the corresponding weight approaches infinity. Unknown parameters

(free variables) in the classical sense have weights P = 0. All other
"measurements" have finite weights 0 < P < o. This mathematical model

for the generalized least squares processing of experimental data is

based on works of Schmid and Schmid [1964], Fubara [1969 and 19731.
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The superscript "a" denotes the exact true values of the "measurements".

Usually, these true values are not known. Instead, the corresponding

measured or approximate values X0 X2, and Lo with associated variance-
-1 -1 -1

covariances P , P 2, P3 , are estimated or measured. Therefore,

Equation (5) can be rewritten in the form

F2 [(XI + AI) , (X0 + A2) , (L + V)] = 0 (9)
F21 2 2 1

where
a o

X Ia = X + A I
a o
2  2  A 2

L= L + V

The linearized form of Equation (9) is

AA + B I 2 + CV 1 + F2 (Xo X2 , Lo) =0 (10)

Al, B1, and CI are the first partial derivatives in a Taylor series
o 0 and o

expansion of Equation (9), associated with X1  2 , and L1, respectively,

while A1, A2, and V, are the correction parameters to be determined.

The least squares solution of Equation (10) to derive the corrections

Al ,2 and V1 to "measured" X0 X2 and Lo is as developed in Fubara [1973].



PRELIMINARY DATA ANALYSIS AND EVALUATION

The analytical data handling formulations for this investigation

call for the following basic inputs: (1) the altimeter ranges, and exact

time (usually GMT) of each measurement to correlate it with (2) the associated

orbit ephemeris, and (3) geoidal information used as geodetic control or

benchmark along the subsatellite track to help define the geodetic scale of

,ie outputs. The main outputs are: (1) the residual bias of the altimeter

or calibration constant required to give a correct absolute geoidal scale,

and (2) the geoidal profile, both deduced from the computer processing of

the imputs using least squares processing with parameter weighting according

to the aforementioned formulations.

Tabulated data from mission SL/2, EREP pass #9, used in this paper,

were obtained from NASA/JSC. We also obtained from NASA/Wallops the orbit

ephemeris and altimeter ranges they computed independently for EREP pass #9.

The NASA/JSC data differ significantly from the NASA/Wallops data, mainly in

terms of scale and their computed geographic locations. Preliminary

evaluation of the data indicate that in general they are good for processing.

Apart from the scale problem, the altimeter ranges look much more consistent

than had been anticipated. There are, however, some irregularities in the

data received. These are being resolved. The independently computed altimeter

ranges and orbit ephemeris received from NASA/JSC and NASA/Wallops present

four different data combinations that were processed. These various combina-

tion solutions were used in the analyses of (1) the efficiency of the data

handling formulations, (2) the influences of orbit errors, and (3) the role

of the choice of a priori geoidal ground truth. Some schools of thought

believe that geoidal heights could be obtained by merely subtracting the

geodetic heights of the satellite from the corresponding altimeter ranges.

We computed and evaluated results from such a method which we consider invalid

due to certain physical limitations of the data.
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RESULTS AND ANALYSIS

From the given satellite orbit and measured altimeter ranges,

the overall objective of the investigation is to simultaneously (a)

determine a geodetic calibration constant(s) that (b) corrects or adjusts

the altimeter ranges for (c) determination of absolute geoidal heights

with correct scale. Tables 1 to 3 and Figures 2 and 3 show the geodetic

heights of the orbits and the altimeter ranges as computed by NASA/JSC

and NASA/Wallops. (All Tables and Figures are at the end of the text.)

Calibration Constants and Adjusted Altimeter Ranges

As developed earlier, the altimeter bias, radial errors in orbit

determination, and errors from inadequate or total lack of correction for

significant sea state variations are all algebraically additive. These

errors are inseparable unless two of them are absolutely known. In this

investigation, the total sum of all three is the calibration constant to

be determined.

Unfortunately, unless the radial orbit error is zero, some known

absolute geoidal height must be used as geodetic control or benchmark in

order to determine the required calibration constant. In this case, the

calibration constant so determined is scalewise-dependent on the a priori

geoidal input or the geodetic control used. This is demonstrated in the

graphs A, B, C, and D of Figure 4. In graph A, the input is zero for a

priori (approximate) geoid heights and no point is held geodetically fixed

relative to another. For graph C, instead of zero, the a priori geoidal

height input was -45 meters for every point. In graphs B and D the approximate

geoidal height inputs were taken from the geoid of Vincent and Marsh [1973],

as shown in Figure 5. In graph D, no points were constrained but, in B,
the first point (left end) was constrained by weighting. For each case,

normalized parameter weighting, consistent with the estimated absolute

accuracy of the a priori geoidal height input, was applied. In all cases,



even though the resultant geoidal height differences were exactly

identical, the deduced calibration constants depended on the weighted

a priori geoidal height inputs. Figure 4 definitely shows that such a

priori inputs affect only the linear scale of the calibration constant

and not the shape of the deduced geoid. Further investigations on the

role of the values and errors that were intentionally introduced into

the a priori geoidal inputs and the results shown in Table 4 and Figure 6

confirm the above conclusion.

In the current Skylab data, the altimeter bias appears to vary

with the modes and the sub-modes which are described in Kern and Katucki

[1973]. This was another factor taken into account. For the current

data processing, the additional assumption is that for a "short time

interval", the systematic radial orbit errors are of constant magnitude

and sign. These two factors constrain the current "short time interval"

for this set of data to be no more than 3 minutes.

A key indicator of the reliability of the analytically computed

geodetic calibration constant is the consistency of the adjusted ranges.

There are currently some avoidable errors in the computed orbit-Wollenhaupt

and Schiesser [1973]. The differences in both orbit and the range data as

computed by NASA/JSC and NASA/Wallops (see Figures 2 and 3 and Tables

1 to 3) confirm that the knowledge of (1) the orbit and (2) the delay

constants (biases) for transforming the radar altimeter returns into ranges

in engineering units is inaccurate. The mathematical model developed for

this analysis anticipated these problems which algebraically add up to be

a linear radial error relative to the earth's geocenter. Through the use

of the discussed appropriately weighted a priori geoidal heights; (a) no

matter what the errors in the different sets of ranges used, the derived

adjusted ranges should be identical if the same orbit is used; (b) alternatively,
if a unique set of ranges is used with different orbit data, the adjusted

set of ranges should differ by only the radial differences between the orbits.
The expectations (a) and (b) are established to within the noise level of the

data by the results of Tables 2 and 3.
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Geoidal Heights Analytically Deduced
from Satellite Altimetry

Table 5 and Figure 5 show the deduced geoidal heights from the

analytical processing of the four data combinations already described.

Figure 5 also shows three other profiles for the same segment of the

geoid as given by Vincent, et al [1972 and 1973] using different

conventional techniques. Our results do not match these other conven-

tional geoid profiles which also disagree with each other significantly.

These three are tilted relative to each other and to the general slope

of the altimeter geoid. However, the overall slope of the altimeter geoid

more closely identified with the slope of the conventional satellite geoid.

The other two conventional geoid segments are primarily based on global gravity

data and satellite-derived geopotential coefficients used in global areas

lacking measured gravity data.

It is logical to assume that whatever systematic radial errors

exist in the computed orbits for the short time period involved, such

errors should be constant in magnitude and sign. It is therefore valid

to assume that, provided the altimeter system is stable, the deduced

altimeter geoid should more closely approximate the true geoid shape of

that segment. So far both the influences of sea state and the departure

of sea surface topography from the true geoid have been neglected.

By merely subtracting the measured altimeter ranges from the

corresponding satellite geodetic heights, the resultant profiles for the

four data combinations are shown in Table 6 and Figure 7. Some schools

of thought believe that this is all there is to geoid computation from

satellite altimetry. The results in Table 6 and Figure 7 show 4 surface

profiles which, if assumed to be the same segment of the geoid, represent

geoid heights in the range of (1) -42 to 48 meters, (2) -62 to -66 meters,

(3) -135 to -139 meters and (4) -155 to -157 meters. In contrast, our

preliminary analytically deduced corresponding 4 profiles represent geoid

heights within -49 to -45 meters, -48 to -46 meters, -49 to -45 meters

and -48 to -47 meters from the 4 data combinations as in Figure 5.
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CONCLUSIONS

The preliminary conclusions from these quick-look data

investigations and previous simulation studies include:

(1) The analytical data handling formulations developed for

this investigation appear to be very satisfactory. The

main outputs required, the geodetic calibration constant,

the geoid height and the corrected altimeter ranges were

reliably determined;

(2) To ensure that the deduced calibration constant and

geodetic heights are absolute, the use of geodetic

control or a benchmark whose absolute geodetic

undulation is known is indispensable. The establishment

of such controls from a combination of astrogravimetry

and satellite data is discussed in Mourad and Fubara [1972],

and in Fubara and Mourad [1972a] and the practical

implementation is partially demonstrated in Fubara and

Mourad [1972b]. There is an implicit correlation between

this conclusion and the conclusion based on a different type

of investigation in Rapp [1971] that: "In carrying out

simulation studies with non-global data it was concluded

that altimetry data could not be used alone for potential

coefficient determination.... Consequently, the altimetry

data was combined with geoid undulation information

in non-ocean blocks and with existing terrestrial gravity

data. ";

(3) On the assumption that the altimeter system is stable,

and that systematic orbit radial errors for short time

periods are constant, the altimeter geoid shows very high

frequency details of the geoid or more accurately the sea

surface topography. Such high frequency details may also

reflect the inexact fulfillments of this assumption or the

uncorrected influence of sea state.
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(4) Subject to additional data processing corrections which

the current state of the SL/2 data precludes, these

preliminary results indicate that satellite altimetry

will be a valid and useful tool for computing quasi-

stationary departures of sea surface topography from the

geoid. This practical application is important to

oceanographic work related to ocean dynamic phenomena

such as circulation patterns, mass water transport, ocean

tides, ocean current influences, etc. These in turn relate

to air-sea interaction and the knowledge for global

numerical weather prediction. Such oceanographic factors

also affect our knowledge of pollution dispersion by the

oceans, an important guiding factor in waste disposal,

and prediction of dispersal and control of oil spill

hazards. Further developments on these issues are in

Fubara and Mourad [1973];

(5) The preliminary indications are that the general slope of

the analytically derived altimeter geoid tends to agree

with that computed from purely satellite derived geopotential

coefficients and orbit perturbation analysis;

(6) Current orbit computation in which inadequately calibrated

altimeter ranges are employed as constraints is not desirable

and present no advantage for processing altimeter data to

compute the geoid. First, the unmodelled range biases

introduce large systematic errors that are not admissible

in least squares orbit computation. Such systematic errors

cannot be accurately eliminated through modeling unless

some valid geodetic controls are used as constraints.

Second, the use of orbits computed in this way to deduce

a geoid from the same altimeter data with purely differencing

or graphical techniques would be misleading. For example,

the geoid so deduced would closely match the original geoid

used in applying the altimeter ranges as a constraint in
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the orbit computation. This type of constraint was

involved in the NASA/Wallops orbit but not in the

NASA/JSC orbit. However, in theory, other salient

features of the NASA/JSC orbit computations are much

less sophisticated than that of NASA/Wallops;

(7) Deduction of the geoid from satellite altimetry cannot

be achieved by merely subtracting altimeter ranges

from the corresponding geodetic heights of the satellite

unless (a) the satellite orbit is errorless, (b) the

altimeter does not drift, and (c) the altimeter system

biases are either non-existent or are absolutely known.

Therefore, in practice, at this time, satellite altimetry

ranges cannot be regarded as representing direct

determination of absolute geoid heights as assumed in

Rapp [1971] simulation studies; however, the general

conclusions of those studies are still valid with

respect to the need for inclusion of terrestrial geodetic

data for analytical processing of satellite altimetry data.

At this time marine geodesy, involving the use of

astrogravimetric and satellite geodesy techniques, appears

indispensable for the full achievement of satellite

altimetry objectives of GEOS-C, and the NASA-proposed

"Earth and Ocean Physics Applications Program".
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TABLE 1. GEODETIC HEIGHT OF SKYLAB AND A PRIORI
GEOIDAL HEIGHTS INVOLVED IN DATA ANALYSIS

(All values are in meters)

Skylab Geodetic Heights
Based on A Prior Geoidal

NASA/JSC NASA/Wallops Height
Orbit Orbit

438752.0 438771.9 -41.0
55.3 75.0 -41.7
56.0 75.6 -41.8
56.7 76.2 -42.0
59.6 79.4 -42.7
63.5 82.7 -43.5
66.7 86.0 -44.3
70.2 89.3 -45.2
70.8 89.8 -45.3
71.3 90.3 -45.5
73.9 93.0 -45.2
76.5 95.4 -46.9
77.0 95.9 -47.0
77.6 96.4 -47.1
80.4 438798.7 -47.8
83.2 438801.6 -48.7
83.8 2.1 -48.8
84.3 2.5 -49.0
86.7 4.7 -49.0
88.0 6.0 -49.1
88.8 7.0 -49.2
89.3 7.5 -49.3
89.7 7.9 -49.3
92.2 10.2 -49.5

438794.9 438812.5 -49.7
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TABLE 2. ANALYTICALLY ADJUSTED RANGES BASED ON
NASA/JSC ORBIT EREP PASS 9 OF SL-2

(All values in meters)

Based on NASA/JSC Orbit
Measured Altimeter Ranges Adjusted Altimeter Ranges

NASA/JSC NASA/Wallops NASA/JSC NASA/Wallops

438814.5 438906.8 438703.8 438704.4
18.6 10.3 07.8 07.9
19.2 11.9 08.5 09.5
19.8 12.3 09.1 09.9
23.4 15.6 12.6 13.2
27.7 19.9 16.9 17.5
31.4 22.2 20.7 19.8
35.2 26.7 24.4 24.3
35.6 26.9 24.8 24.5
36.2 27.9 25.5 25.5
38.9 30.6 28.1 28.2
40.8 32.5 30,0 30.1
41.6 33.2 30,8 30.8
42.0 33.9 31.3 31.5
45.6 36.1 34.8 33.7
48.5 39.9 37.8 37.5
49.1 41.3 38.4 38.9
49.4 41.6 38.7 39.2
51.8 43.1 41.1 40.7
53.2 44.7 42.5 42.3
54.3 45.0 43.6 42.6
55.1 45.9 44.3 43.5
54.6 46.6 43.8 44.2
56.8 47.8 46.1 45.4

438859.7 438950.7 438749.0 438738.3

Geodetic Calibration
Constant

-110-7 -202*4
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TABLE 3. ANALYTICALLY ADJUSTED RANGES BASED ON
NASA/WALLOPS ORBIT EREP PASS 9 OF SL-2

Based on NASA/Wallops Orbit
Measured Altimeter Ranges Adjusted Altimeter Ranges

in meters in meters

NASA/JSC NASA/Wallops NASA/JSC NASA/Wallops

438814.5 438906.8 438722.5 438723.2
18.6 10.3 26.6 26.7
19.2 11.9 27.3 28.3
19.8 12.3 27.9 28.7
23.4 15.6 31.4 32.0
27.7 19.9 35.7 36.3
31.4 22.2 39.5 38.6
35.2 26.7 43.2 43.1
35.6 26.9 43.7 43.3
36.2 27.9 44.2 44.3
38.8 30.6 46.8 47.0
40.8 32.5 48.9 48.9
41.6 33.2 49.6 49.6
42.0 33.9 50.0 50.3
45.6 36.1 53.6 52.5
48.5 39.9 56.5 56.3
49.1 41.3 57.2 57.7
49.4 41.6 57.5 58.0
51.8 43.1 59.9 59.5
53.2 44.7 61.2 61.1
54.3 45.0 62.4 61.4
55.0 45.9 63.1 62.3
54.6 46.6 62.6 63.0
56.8 47.8 64.9 64.2

438859.7 438950.7 438767.8 438767.1

Geodetic Calibration
Const nt

-91-9 -183*6
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FIGURE 2. GEODETIC HEIGHT OF SKYLAB (SL-2 EREP PASS #9)
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OWJ = WALLOPS ORBIT/HOUSTON RANGES

OJJ - HOUSTON ORBIT/HOUSTON RANGES

OWW = WALLOPS ORBIT/WALLOPS RANGES
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I T I it GG-72 = GRAVIMETRIC GEOID (VINCENT et al, 72)
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TABLE 4. EFFECT OF ERRORS IN A PRIORI
GEOID HEIGHT INPUTS
(values in meters)

Control Result Results from Input Errors

A priori Adjusted A priori Adjusted A priori Adjusted
Geoid Input Geoid Heights Geoid Input Geoid Heights Geoid Input Geoid Heights

-41.0 -48.2 -46.0 -35.3 -47.0 -48.3
-41.7 -47.4 -33.7 -34.6 -35.7 -47.5
-41.8 -47.5 -44.8 -34.6 -47.8 -47.5
-42.0 -47.5 -32.0 -34.7 -36.0 -47.6
-42.7 -47.0 -43.7 -34.1 -48.7 -47.0
-43.5 -46.5 -31.5 -33.6 -37.5 -46.6
-44.3 -46.0 -43.3 -33.1 -50.3 -46.1
-45.2 -45.7 -31.2 -32.8 -39.2 -45.8
-45.3 -45.9 -42.3 -33.0 -51.3 -46.0
-45.5 -45.8 -29.5 -33.0 -39.5 -45.9
-46.2 -45.9 -41.2 -32.0 -52.2 -45.9
-46.9 -46.5 -28.9 -33.6 -40.9 -46.5
-47.0 -46.2 -40.0 -33.3 -53.0 -46.3
-47.1 -46.3 -27.1 -33.4 -41.1 -46.3
-47.8 -45.6 -38.8 -32.7 -53.8 -45.6
-48.7 -45.4 -26.7 -32.5 -42.7 -45.5
-48.8 -45.5 -37.8 -32.6 -54.8 -45.5
-49.0 -45.6 -25.0 -32.7 -43.0 -45.7
-49.0 -45.6 -36.0 -32.7 -55.0 -45.6
-49.1 -45.5 -23.1 -32.6 -43.1 -45.6
-49.2 -45.2 -34.2 -32.3 -55.2 -45.3
-49.3 -44.9 -21.3 -32.1 -43.3 -45.0
-49.3 -45.9 -32.3 -33.0 -55.3 -46.0
-49.5 -46.1 -19.5 -33.2 -43.5 -46.2
-49.7 -45.9 -30.7 -33.0 -55.7 -45.9
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Legend:

A-I = A PrioriL Geoid Input.
A-0 = Resultant Satellite Altimetry Geoid from A-I.
B-I = A Priori Geoid Input.

6 B-0 = Resultant Satellite Altimetry Geoid from B-I. .. ....

C-I = A Priori Geoid Input.
8 C-0 = Resultant Satellite Altimetry Geoid from C-I.
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TABLE 5. ANALYTICALLY COMPUTED GEOIDAL HEIGHTS
FROM DIFFERENT DATA COMBINATIONS

(Values in meters)

OJJ OJW OWW OWJ

-48.2 -47.5 -48.7 -49.3
-47.4 -47.4 -48.3 -48.3
-47.5 -46.5 -47.3 -48.3
-47.5 -46.7 -47.5 -48.3
-47.0 -46.4 -47.4 -48.0
-46.5 -45.9 -46.4 -46.9
-46.0 -46.7 -47.4 -46.5
-45.7 -45.8 -46.2 -46.0
-45.9 -46.3 -46.5 -46.1
-45.8 -45.8 -46.0 -46.0
-45.9 -45.7 -46.0 -46.1
-46.5 -46.4 -46.5 -46.5
-46.2 -46.2 -46.3 -46.3.
-46.3 -46.1 -46.1 -46.3
-45.6 -46.7 -46.2 -45.1
-45.4 -45.7 -45.3 -45.0
-45.5 -44.9 -44.4 -44.9
-45.6 -45.1 -44.5 -45.0
-45.6 -46.0 -45.2 -44.8
-45.5 -45.7 -44.9 -44.7
-45.2 -46.2 -45.6 -44.6
-45.0 -45.8 -45.2 -44.4
-45.9 -45.3 -44.9 -45.3
-46.1 -46.8 -46.0 -45.3
-45.9 -46.6 -45.4 -44.7

Average
Std. Error* + 3-1 + 3-0 + 3-2 + 3.2

* Std. Error = square root of main diagonal element of variance
covariance matrix of the least squares adjustment

Key to Data Combination

OJJ = NASA/JSC Orbit and NASA/JSC Altimeter Ranges

OJW = NASA/JSC Orbit and NASA/Wallops Altimeter Ranges

OWW = NASA/Wallops Orbit and NASA/Wallops Altimeter Ranges

OWJ = NASA/Wallops Orbit and NASA/JSC Altimeter Ranges
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TABLE 6. APPARENT "GEOIDAL HEIGHTS" FROM GEODETIC
HEIGHT OF SKYLAB ORBIT MINUS ALTIMETER RANGE

OJJ OJW OWW OWJ

-62.5 -154.8 -134.9 -42.6
-62.3 -155.0 -135.3 -43.6
-63,2 -155.9 -136.3 -43.6
-63.2 -155.6 -136.1 -43.6
-63.7 -156.0 -136.2 -44.0
-64.2 -156.4 -137.2 -45.0
-64.7 -155.5 -136.2 -45.4
-65.0 -156.5 -137.4 -45.9
-64.8 -156.1 -137.1 -45.8
-64.9 -156.6 -137.6 -45.9
-64.9 -156.7 -137.6 -45.8
-64.3 -156.0 -137.1 -45.4
-64.5 -156.2 -137.3 -45.7
-64.4 -156.3 -137.5 -45.6
-65.1 -155.7 -137.4 -46.9
-65.3 -156.7 -138.3 -46.9
-65.3 -157.5 -139.2 -47.0
-65.1 -157.3 -139.1 -46.9
-65.1 -156.4 -138.4 -47.1
-65.2 -156.7 -138.7 -47.1
-65.5 -156.2 -138.0 -47.3
-65.8 -156.6 -138.4 -47.6
-64.8 -156.8 -138.7 -46.7
-64.6 -155.6 -137.6 -46.6
-64.8 -155.8 -138.2 -47.2

Key to Data Combination

OJJ = NASA/JSC Orbit and NASA/JSC Altimeter Ranges

OJW = NASA/JSC Orbit and NASA/Wallops Altimeter Ranges

OWW = NASA/Wallops Orbit and NASA/Wallops Altimeter Ranges

OWJ = NASA/Wallops Orbit and NASA/JSC Altimeter Ranges
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